A penalized latent class model for ordinal data
نویسندگان
چکیده
منابع مشابه
A penalized latent class model for ordinal data.
Latent class models provide a useful framework for clustering observations based on several features. Application of latent class methodology to correlated, high-dimensional ordinal data poses many challenges. Unconstrained analyses may not result in an estimable model. Thus, information contained in ordinal variables may not be fully exploited by researchers. We develop a penalized latent clas...
متن کاملFeature-specific penalized latent class analysis for genomic data.
Genomic data are often characterized by a moderate to large number of categorical variables observed for relatively few subjects. Some of the variables may be missing or noninformative. An example of such data is loss of heterozygosity (LOH), a dichotomous variable, observed on a moderate number of genetic markers. We first consider a latent class model where, conditional on unobserved membersh...
متن کاملOrdinal Embedding with a Latent Factor Model
Constructing low-dimensional embeddings based on ordinal measurements has been a subject of significant recent interest, motivated in part by machine learning applications using human input in a robust way. Recent work has focused on observations of comparisons on distances between objects. We consider a different model where the embedding is formed within a latent space of factors upon which a...
متن کاملA latent class selection model for nonignorably missing data
A Latent-Class Selection Model for Nonignorably Missing Data Most missing-data procedures assume that the missing values are ignorably missing or missing at random (MAR), which means that the probabilities of response do not depend on unseen quantities. Although this assumption is convenient, it is sometimes questionable. For example, questionnaire items pertaining to sensitive information (e.g...
متن کاملA latent-class mixture model for incomplete longitudinal Gaussian data.
In the analyses of incomplete longitudinal clinical trial data, there has been a shift, away from simple methods that are valid only if the data are missing completely at random, to more principled ignorable analyses, which are valid under the less restrictive missing at random assumption. The availability of the necessary standard statistical software nowadays allows for such analyses in pract...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biostatistics
سال: 2007
ISSN: 1465-4644,1468-4357
DOI: 10.1093/biostatistics/kxm026